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Goals for the lecture 
you should understand the following concepts 

•  perceptrons 
•  the perceptron training rule 
•  linear separability 
•  hidden units 
•  multilayer neural networks 
•  gradient descent 
•  stochastic (online) gradient descent 
•  sigmoid function 
•  gradient descent with a linear output unit 
•  gradient descent with a sigmoid output unit 
•  backpropagation 
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Goals for the lecture 
you should understand the following concepts 

•  weight initialization 
•  early stopping 
•  the role of hidden units 
•  input encodings for neural networks 
•  output encodings 
•  recurrent neural networks 
•  autoencoders 
•  stacked autoencoders 
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Neural networks 
•  a.k.a. artificial neural networks, connectionist models 
•  inspired by interconnected neurons in biological systems 

•  simple processing units 
•  each unit receives a number of real-valued inputs 
•  each unit produces a single real-valued output 
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Perceptrons 
[McCulloch & Pitts, 1943; Rosenblatt, 1959; Widrow & Hoff, 1960] 

o = 1  if  w0 + wi
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Learning a perceptron:  
the perceptron training rule 

Δwi =η y − o( )xi

1.  randomly initialize weights 

2.  iterate through training instances until convergence 

o = 1  if  w0 + wi
i=1
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∑ xi > 0

0  otherwise             
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wi ←wi + Δwi

2a. calculate the output 
for the given instance 

2b. update each weight 

η is learning rate; 
set to value << 1 6 



Representational power of perceptrons 

o = 1  if  w0 + wi
i=1
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∑ xi > 0

0  otherwise             
 

"

#
$

%
$

perceptrons can represent only linearly separable concepts 
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w1x1 +w2x2 = −w0

x2 = −
w1
w2

x1 −
w0
w2

1  if  w0 +w1x1 +w2x2 > 0

decision boundary given by: 
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also write as: wx > 0 
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Representational power of perceptrons 

•  in previous example, feature space was 2D so decision 
boundary was a line  

•  in higher dimensions, decision boundary is a hyperplane 
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Some linearly separable functions 
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XOR is not linearly separable 
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a multilayer perceptron 
can represent XOR 

assume w0 = 0 for all nodes 10 



Example multilayer neural network 

input: two features from spectral analysis of a spoken sound 
 
output: vowel sound occurring in the context “h__d” 

figure from Huang  & Lippmann, NIPS 1988 

input units 

hidden units 

output units 
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Decision regions of a multilayer  
neural network 

input: two features from spectral analysis of a spoken sound 
 
output: vowel sound occurring in the context “h__d” 

figure from Huang  & Lippmann, NIPS 1988 
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Learning in multilayer networks 
•  work on neural nets fizzled in the 1960’s 

•  single layer networks had representational limitations 
(linear separability) 

•  no effective methods for training multilayer networks 

•  revived again with the invention of backpropagation method 
[Rumelhart & McClelland, 1986; also Werbos, 1975] 
•  key insight: require neural network to be differentiable; 

use gradient descent 

x1

x2

how to determine 
error signal for  
hidden units?  
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Gradient descent in weight space 

figure from Cho & Chow, Neurocomputing 1999 

E(w) = 1
2

y(d ) − o(d )( )2
d∈D
∑

Given a training set                                                      we can specify an 
error measure that is a function of our weight vector w	



This error measure defines a surface over the hypothesis (i.e. weight) space	



w1	

w2	



 D = (x(1),  y(1) )…(x(m ),  y(m ) ){ }
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Gradient descent in weight space 

w1	



w2        	



Error 

on each iteration 
•  current weights define a 

point in this space 
•  find direction in which 

error surface descends 
most steeply 

•  take a step (i.e. update 
weights) in that direction  

gradient descent is an iterative process aimed at finding a minimum in 
the error surface 
 

15 



Gradient descent in weight space 

w1	



w2        	



Error 

−
∂E
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−
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Δw = −η  ∇E w( )

Δwi = −η  ∂E
∂wi

calculate the gradient of E: 

take a step in the opposite direction 
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The sigmoid function 
•  to be able to differentiate E with respect to wi , our network 

must represent a continuous function 
•  to do this, we use sigmoid functions instead of threshold 

functions in our hidden and output units 

f (x) = 1
1+ e− x

x 17 



The sigmoid function 
for the case of a single-layer network 

f (x) = 1

1+ e
− w0+ wixi

i=1

n
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w0 + wixi
i=1

n

∑
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Batch neural network training 

given: network structure and a training set 

initialize all weights in w to small random numbers 

until stopping criteria met do 

  initialize the error 

  for each (x(d), y(d)) in the training set 

   input x(d)
  to the network and compute output o(d) 

   increment the error 

  calculate the gradient 

 

 

  update the weights 	



  

 D = (x(1),  y(1) )…(x(m ),  y(m ) ){ }

E(w) = E(w)+ 1
2
y(d ) − o(d )( )2
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Δw = −η  ∇E w( )

E(w) = 0
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Online vs. batch training  

•  Standard gradient descent (batch training): calculates 
error gradient for the entire training set, before taking a 
step in weight space 

•  Stochastic gradient descent (online training): calculates 
error gradient for a single instance, then takes a step in 
weight space 
–  much faster convergence 
–  less susceptible to local minima 
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Online neural network training 
(stochastic gradient descent) 

given: network structure and a training set 

initialize all weights in w to small random numbers 

until stopping criteria met do 

  for each (x(d), y(d)) in the training set 

   input x(d)
  to the network and compute output o(d) 

   calculate the error 

   calculate the gradient 

 

 

   update the weights 	



  

 D = (x(1),  y(1) )…(x(m ),  y(m ) ){ }
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Convergence of gradient descent 
•  gradient descent will converge to a minimum in the error function 

•  for a multi-layer network, this may be a local minimum (i.e. there 
may be a “better” solution elsewhere in weight space) 

•  for a single-layer network, this will be a global minimum (i.e. 
gradient descent will find the “best” solution) 
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Taking derivatives in neural nets 

y = f (u)
u = g(x)

∂y
∂x

=
∂y
∂u

∂u
∂x

recall the chain rule from calculus 

∂E
∂wi

 =  ∂E
∂o

∂o
∂net

∂net
∂wi

we’ll make use of this as follows 

net = w0 + wi
i=1

n

∑ xi
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Gradient descent: simple case 
Consider a simple case of a network with one linear output unit 
and no hidden units: 
 

o(d ) = w0 + wi
i=1

n

∑ x(d )i

E(w) = 1
2

y(d ) − o(d )( )2
d∈D
∑

let’s learn wi’s that minimize squared error 
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=
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∂wi

1
2
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d∈D
∑

batch case 
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Stochastic gradient descent: simple case 

∂E (d )

∂wi

 =  ∂
∂wi

1
2
y(d ) − o(d )( )2

= y(d ) − o(d )( ) ∂
∂wi

y(d ) − o(d )( )

= − y(d ) −o(d )( ) xi

(d )( )

let’s focus on the online case (stochastic gradient descent): 
 

= y(d ) − o(d )( ) −
∂o(d )

∂wi
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= − y(d ) − o(d )( ) ∂o
(d )

∂net (d )
∂net (d )

∂wi

= − y(d ) − o(d )( ) ∂net
(d )

∂wi
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Gradient descent with a sigmoid 
Now let’s consider the case in which we have a sigmoid output 
unit and no hidden units: 
 

net (d ) = w0 + wi
i=1

n

∑ x(d )i
x1

x2

xn

w1

w2

wn

w01

o(d ) = 1
1+ e−net

(d )

∂o(d )

∂net (d )
= o(d )(1− o(d ) )

useful property: 
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Stochastic GD with sigmoid output unit 
∂E (d )

∂wi

 =  ∂
∂wi

1
2
y(d ) − o(d )( )2

= y(d ) − o(d )( ) ∂
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∂net (d )
∂net (d )

∂wi

= − y(d ) − o(d )( )o(d )(1− o(d ) ) ∂net
(d )

∂wi
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Backpropagation 

∂E
∂wi

•  now we’ve covered how to do gradient descent for single-layer 
networks with 
•  linear output units 
•  sigmoid output units 

•  how can we calculate           for every weight in a multilayer network? 

è backpropagate errors from the output units to the hidden units 

28 



Backpropagation notation 
let’s consider the online case, but drop the (d) superscripts for simplicity 
 
we’ll use  

•  subscripts on y, o, net  to indicate which unit they refer to 
•  subscripts to indicate the unit a weight emanates from and goes to 

wjii	



j	

 oj
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Backpropagation 

=η  δ j  oi

 
each weight is changed by 
 
 

Δwji = −η  ∂E
∂wji

= −η  ∂E
∂net j

∂net j
∂wji

δ j = −
∂E
∂net j

where xi if i is an input unit 
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Backpropagation 

Δwji =η  δ j  oi

δ j = −
∂E
∂net j

δ j = oj (1− oj )(yj − oj )

δ j = oj (1− oj ) δ kwkj
k
∑

 
each weight is changed by 
 
 

where 
 
 
 if j is an output unit 

if j is a hidden unit 

same as 
single-layer net 
with sigmoid 
output 

31 

sum of backpropagated 
contributions to error 



Backpropagation illustrated 

j	



1.  calculate error of output units 
δ j = oj (1− oj )(yj − oj )

2.  determine updates for 
weights going to output units 
Δwji =η  δ j  oi
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Backpropagation illustrated 

j	



4.  determine updates for  
weights to hidden units using 
hidden-unit errors  
Δwji =η  δ j  oi

j	



3.  calculate error for hidden units 

δ j = oj (1− oj ) δ kwkj
k
∑
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Neural network jargon 

•  activation: the output value of a hidden or output unit 

•  epoch: one pass through the training instances during gradient descent 

•  transfer function:  the function used to compute the output of a hidden/
output unit from the net input 
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Initializing weights 

•  Weights should be initialized to 
•  small values so that the sigmoid activations are in the range 

where the derivative is large (learning will be quicker) 

•  random values to ensure symmetry breaking (i.e. if all weights 
are the same, the hidden units will all represent the same thing) 

•  typical initial weight range [-0.01, 0.01] 
35 



Setting the learning rate 

η too large (error goes up) 

η too small (error goes down 
                    a little) 

−
∂E
∂wij

wij

E
rr

or
 

convergence depends on having an appropriate learning rate  
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Stopping criteria 
•  conventional gradient descent: train until local minimum reached 

•  empirically better approach:  early stopping 
•  use a validation set to monitor accuracy during training iterations 
•  return the weights that result in minimum validation-set error 

error 

training iterations 

stop training here 
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Input (feature) encoding for neural networks 
nominal features are usually represented using a 1-of-k encoding 
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ordinal features can be represented using a thermometer encoding 
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 precipitation = 0.68[ ]

real-valued features can be represented using individual input units (we 
may want to scale/normalize them first though) 
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Output encoding for neural networks 
regression tasks usually use output units with linear transfer functions 

binary classification tasks usually use one sigmoid  output unit 

k-ary classification tasks usually use k sigmoid or softmax output units 

oi =
eneti

enet j
j∈outputs
∑
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Recurrent neural networks 

recurrent networks are sometimes used for tasks that involve making 
sequences of predictions 
•  Elman networks: recurrent connections go from hidden units to inputs 
•  Jordan networks: recurrent connections go from output units to inputs 
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Alternative approach to  
training deep networks 

•  use unsupervised learning to to find useful hidden unit 
representations 
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Learning representations 

•  the feature representation provided is often the most 
significant factor in how well a learning system works 

•  an appealing aspect of multilayer neural networks is 
that they are able to change the feature representation 

•  can think of the nodes in the hidden layer as new 
features constructed from the original features in the 
input layer 

•  consider having more levels of constructed features, 
e.g., pixels -> edges -> shapes -> faces or other objects 
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Competing intuitions 
•  Only need a 2-layer network (input, hidden layer, output) 

–  Representation Theorem (1989): Using sigmoid activation 
functions (more recently generalized to others as well), can 
represent any continuous function with a single hidden layer 

–  Empirically, adding more hidden layers does not improve 
accuracy, and it often degrades accuracy, when training by 
standard backpropagation 

 
•  Deeper networks are better 

–  More efficient representationally, e.g., can represent n-variable 
parity function with polynomially many (in n) nodes using multiple 
hidden layers, but need exponentially many (in n) nodes when 
limited to a single hidden layer 

–  More structure, should be able to construct more interesting 
derived features 
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The role of hidden units 
•  Hidden units transform the input space into a new space where 

perceptrons suffice 
•  They numerically represent “constructed” features 
•  Consider learning the target function using the network structure below: 
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The role of hidden units 

•  In this task, hidden units learn a compressed numerical coding of the 
inputs/outputs 

45 



How many hidden units should be used? 
•  conventional wisdom in the early days of neural nets: prefer small 

networks because fewer parameters (i.e. weights & biases) will be 
less likely to overfit 

•  somewhat more recent wisdom: if early stopping is used, larger 
networks often behave as if they have fewer “effective” hidden 
units, and find better solutions 

test set 
error 

training epochs 

4 HUs 

15 HUs 

Figure from Weigend, Proc. of the CMSS 1993 46 



Another way to avoid overfitting 
•  Allow many hidden units but force each hidden unit to 

output mostly zeroes: tend to meaningful concepts 
 
•  Gradient descent solves an optimization problem—

add a “regularizing” term to the objective function 
 
•  Let X be vector of random variables, one for each 

hidden unit, giving average output of unit over data 
set.  Let target distribution s have variables 
independent with low probability of outputting one 
(say 0.1), and let ŝ be empirical distribution in the 
data set.  Add to the backpropagation target function 
(that minimizes δ’s) a penalty of KL(s(X)||ŝ(X)) 
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Backpropagation with  
multiple hidden layers 

•  in principle, backpropagation can be used to train arbitrarily deep 
networks (i.e. with multiple hidden layers) 

•  in practice, this doesn’t usually work well 
 

•  there are likely to be lots of local minima 

•  diffusion of gradients leads to slow training in lower layers 

•  gradients are smaller, less pronounced at deeper levels 

•  errors in credit assignment propagate as you go back 
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Autoencoders 
•  one approach: use autoencoders to learn hidden-unit representations 
•  in an autoencoder, the network is trained to reconstruct the inputs 
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Autoencoder variants 

•  how to encourage the autoencoder to generalize 

•  bottleneck: use fewer hidden units than inputs 

•  sparsity: use a penalty function that encourages most 
hidden unit activations to be near 0                  
[Goodfellow et al. 2009] 

•  denoising: train to predict true input from corrupted input 
[Vincent et al. 2008] 

•  contractive: force encoder to have small derivatives (of 
hidden unit output as input varies)  [Rifai et al. 2011] 
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Stacking Autoencoders 
•  can be stacked to form highly nonlinear representations 

[Bengio et al. NIPS 2006] 

train autoencoder 
to represent x	



Discard output layer; 
train autoencoder 
to represent h1 
 
Repeat for k layers 

discard output layer; train 
weights on last layer for 
supervised task 

each Wi here represents the matrix of weights between layers 51 



Fine-Tuning 

•  After completion, run backpropagation on the entire 
network to fine-tune weights for the supervised task	



•  Because this backpropagation starts with good 
structure and weights, its credit assignment is 
better and so its final results are better than if we 
just ran backpropagation initially 

52 



Why does the unsupervised training 
step work well? 

•  regularization hypothesis: representations that are 
good for P(x) are good for P(y | x)	



•  optimization hypothesis: unsupervised 
initializations start near better local minima of 
supervised training error 
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Deep learning not limited to 
neural networks 

•  First developed by Geoff Hinton and colleagues for 
belief networks, a kind of hybrid between neural 
nets and Bayes nets	



•  Hinton motivates the unsupervised deep learning 
training process by the credit assignment problem, 
which appears in belief nets, Bayes nets, neural 
nets, restricted Boltzmann machines, etc. 
•  d-separation: the problem of evidence at a converging 

connection creating competing explanations 
•  backpropagation: can’t choose which neighbors get the 

blame for an error at this node  
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Room for Debate 
•  many now arguing that unsupervised 

pre-training phase not really needed… 
•  backprop is sufficient if done better 

– wider diversity in initial weights, try with 
many initial settings until you get learning 

– don’t worry much about exact learning rate, 
but add momentum: if moving fast in a 
given direction, keep it up for awhile 

– Need a lot of data for deep net backprop 
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Dropout training 
•  On each training iteration, drop out (ignore) 

90% of the units (or other %) 
•  Ignore for forward & backprop (all training) 
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Dropout 

On each training iteration 
–  randomly “drop out” a subset of the units and their weights 
–  do forward and backprop on remaining network 

Figures from Srivastava et al., Journal of Machine Learning Research 2014 

Dropout 

At test time 
–  use all units and weights in the network 
–  adjust weights according to the probability that the source unit 

was dropped out 

Figures from Srivastava et al., Journal of Machine Learning Research 2014 



At Test Time 
•  Final model uses all nodes 
•  Multiply each weight from a node by fraction 

of times node was used during training 

57 

Dropout 

On each training iteration 
–  randomly “drop out” a subset of the units and their weights 
–  do forward and backprop on remaining network 

Figures from Srivastava et al., Journal of Machine Learning Research 2014 

Dropout 

At test time 
–  use all units and weights in the network 
–  adjust weights according to the probability that the source unit 

was dropped out 

Figures from Srivastava et al., Journal of Machine Learning Research 2014 



Some Deep Learning Resources 

•  Nature, Jan 8, 2014: 
http://www.nature.com/news/computer-science-the-
learning-machines-1.14481 

 
•  Ng Tutorial: 

http://deeplearning.stanford.edu/wiki/index.php/
UFLDL_Tutorial 

 
•  Hinton Tutorial: 

http://videolectures.net/jul09_hinton_deeplearn/ 
 
•  LeCun & Ranzato Tutorial: http://www.cs.nyu.edu/

~yann/talks/lecun-ranzato-icml2013.pdf 58 



Comments on neural networks 
•  stochastic gradient descent often works well for very large data sets 

•  backpropagation generalizes to 
•  arbitrary numbers of output and hidden units 
•  arbitrary layers of hidden units (in theory) 
•  arbitrary connection patterns 
•  other transfer (i.e. output) functions 
•  other error measures 
 

•  backprop doesn’t usually work well for networks with multiple layers of 
hidden units; recent work in deep networks addresses this limitation 
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